

course title	Orbital engineering					Course number	9033113021	
English name	Ra	ailroad T	rack	c Engineering				
Applicable specialties		•		ring (constructio ban rail transit di		° °	\Box road and bridge	
Nature of the course	co	urse (ele	ctiv		1) ii	ndependent develop	□ professional core ment course (required	
Unit offering the course	Sc	hool of (Civi	1 Engineering				
total class hours	90	credit	3	Contact hours	48	Self-study hours	42	
Prerequisite courses				echanics, materia ucture design	l m	echanics, structural	mechanics, principles	
		ourse ma ailway Pr			1. 7	Frack Engineering	[M]. Beijing: China	
Textbooks and	20	Reference: Li Chenghui. Railway tracks [M]. Beijing: China Railway Press, 2014.						
teaching materials		Railway Track Design Code (TB10082-2017) [S]. Beijing: China Railway Press, 2017.						
	Ra	ailway S		lless Line Design ailway Press, 201		ode (TB10015-2012	2) [S]. Beijing: China	

Orbital Engineering Syllabus

1. Course Introduction

"Track Engineering" is a core professional course in the direction of urban rail transit engineering within the Civil Engineering discipline, and it is a required course for the major. The main content includes ballasted and non-ballasted track structures, geometric and positional aspects of track structures, mechanical analysis of track structures, structure and geometric dimensions of turnouts, basic principles of seamless lines, stability calculations, structural design methods, maintenance and management of track structures, and urban rail transit track structures. The learning objectives are to master the structures of ballasted and non-ballasted tracks, understand the geometric and positional aspects of track structures, apply principles of track structure mechanics and seamless line principles to design track structures, grasp the structure and dimensions of turnouts, possess the ability to calculate turnout designs, and be capable of maintaining and managing track structures.

1. The graduation requirements supported by this course and the path to achieve them

Number	Graduation requirement indicators	Specific content of graduation requirement indicators
1	Graduation requirements 1.3	Be able to use civil engineering professional knowledge and other knowledge to analyze, model and solve complex civil engineering problems, and have the ability to compare and synthesize solutions
2	Graduation requirement 5.2	Be able to use modern tools to analyze, calculate and design complex civil engineering problems, and be able to analyze the effectiveness and limitations of the results
3	Graduation requirements 12.2	Have the ability of independent learning, including the ability to understand technical problems, summarize and summarize, and ask questions, so as to adapt to the new development of civil engineering industry

(1) The graduation requirements that this course can support

(2) The implementation path of graduation requirements in this course

1. Course objectives

Through the teaching of this course, students will master basic knowledge and have certain application ability. The specific objectives of this course are as follows:

Course Objective 1: master the professional knowledge of ballasted track structure, ballasted track structure, track geometry and position, turnout, seamless line, track maintenance, etc., understand the cutting-edge dynamic of track structure, be able to use the knowledge to analyze, model and solve complex engineering problems in track engineering, compare and synthesize solutions.

Course Objective 2: be able to use MATLAB, EXCEL and other modern tools to analyze, calculate and design complex engineering problems such as mechanical analysis and strength calculation of track structure in track engineering, size calculation and track distribution of single turnout, calculation and design of wireless line, etc., and analyze the effectiveness and limitations of the results.

Course Objective 3: In the study of track engineering knowledge and its application, I can cultivate my ability of independent learning, including the ability to understand technical problems, summarize and summarize, and put forward questions, so as to adapt to the new

development of civil engineering industry.

2. The corresponding relationship between the course teaching objectives and the graduation requirements

Graduation requirement indicators	Course teaching objectives
Graduation requirements 1.3	Course Objective 1
Graduation requirement 5.2	Course objective 2
Graduation requirement 12.2	Course objective 3

2. Expected learning results and details of teaching links

(1) Expected learning outcomes

The expected learning outcomes of this	course are as follows
--	-----------------------

blocks of knowledge	knowledge point	initial level	Degree of requirement	Expected learning outcomes	corresponding program objective
1. Basic concepts of orbital structure	1. The function, characteristics, types and requirements of the track	LI	L 2	1. Correctly understand the role and characteristics of tracks; correctly distinguish different types of track structures; correctly distinguish the different requirements of high-speed railway, heavy-haul railway and urban rail transit for track structures; understand new technologies of track structures.	1
2. Ballasted track structure	2. Structure composition and components of ballasted track	L1	L2	2. Correctly understand the structural composition of ballasted tracks and the functions of each part; distinguish between types of	1

blocks of knowledge	knowledge point	initial level	Degree of requirement	Expected learning outcomes	corresponding program objective
				rails, correctly set the rail joints, and use rails; correctly differentiate the classification of sleepers and understand their advantages and disadvantages; correctly distinguish between joint connection components and intermediate connection components (couplers); correctly understand the ballast materials and technical standards of ballasted tracks, as	objective
3. Ballastless track structure	3. Types and structures of ballastless tracks	L1	L2	wellasthecross-sectionalcharacteristicsofthe subgrade.3. Understandthetypesandparametersofcommon ballastlesstrackconnectionparts;understandthestructurecompositionandcharacteristicsofvarioustypesofstructure	1
4. Track geometry and position	4. Basic elements of orbital geometry	L1	L2	4. Understand the structure of the running part of locomotives and rolling stock; correctly understand the	1

Appendix B-7: Orbital Engineering Syllabus

blocks of knowledge	http://www.commonstate.com/www.commonstate.com/ knowledge point	initial level	Degree of requirement	Expected learning outcomes	corresponding program objective
				basic requirements, meanings and standards of the geometric position of straight tracks.	
	5. Curve track gauge widening, overhang and transition curve	L1	L2	5. Correctly design the curve super height; correctly understand the basic principles and calculation methods of curve gauge widening; understand the function and setting method of the transition curve.	1
5. Track structure mechanical analysis	6. Quasi-static calculation and strength verification of track structure	L1	L3	6. The continuous elastic foundation beam model is correctly applied to the static calculation of the track; the formula is correctly applied to the quasi-static calculation of the dynamic action of the track structure; the strength of each part of the track is correctly checked.	2
6. Turnouts	7. Type of turnout, structure and geometric dimensions of single turnout and overall layout diagram	LI	L3	7. Understand the type of turnout; correctly understand the structure of a single turnout; correctly understand the geometric dimensions and significance of a single turnout.	2

Appendix B-7: Orbital Engineering Syllabus

blocks of knowledge	knowledge point	initial level	Degree of requirement	Expected learning outcomes	corresponding program objective
	8. Crossing speed and measures to improve crossing speed	L1	L2	8. Correctly understand the speed of crossing and measures to improve the speed of crossing.	1
7. Seamless lines	9. Stability principle and structural design method of seamless line	L1	L3	9. Correctly distinguish the types of seamless lines and understand the basic principles, understand temperature force, longitudinal resistance of lines and temperature force; understand the concept of stability of seamless lines and influencing factors, apply unified theory of stability of seamless lines for calculation; correctly determine the design locking rail temperature and design structure of seamless lines.	2
8. Repair and management of orbital structures	10. Repair content of track structure, machinery and management	LI	L2	10. Correctly understand the content of track structure inspection; correctly apply regulations to evaluate the quality of track structure; understand track structure repair machinery; understand seamless line	3

blocks of knowledge	knowledge point	initial level	Degree of requirement	Expected learning outcomes	corresponding program objective
				maintenance technology; understand the characteristics of high-speed railway maintenance and repair.	
9. Other urban rail transit tracks	11. Introduction to other urban rail transit tracks	Ll	L2	11. Understand the track structure characteristics of ordinary subway rail transit, linear motor wheel rail traffic, monorail traffic, maglev rail transit and other urban rail transit.	3

(2) Detailed rules for teaching links

content of courses (knowledge point)	Class hours	Expected learning outcomes (ILO)	Implementation link (In class, projects, etc.)	instructional strategies
1. The function, characteristics, types and requirements of the track	2	1. Correctly understand the role and characteristics of tracks; correctly distinguish different types of track structures; correctly distinguish the different requirements of high-speed railway, heavy-haul railway and urban rail transit for track structures; understand new technologies of track structures.	In-class teaching class exercise	lecture deliberate picture presentation Problem-oriented
2. Structure composition and components of ballasted track		2. Correctly understand the structure of ballasted tracks and the functions of each part; distinguish between types of rails, correctly set the rail joints, and use rails; correctly differentiate the classification of sleepers and understand their advantages and disadvantages; correctly distinguish between joint connection components and intermediate connection components (couplers);	instruction class exercise homework	lecture deliberate picture presentation Problem-oriented

content of courses (knowledge point)	Class hours	Expected learning outcomes (ILO)	Implementation link (In class, projects, etc.)	instructional strategies
		correctly understand the ballast materials and technical standards for ballasted tracks, as well as the cross-sectional characteristics of the subgrade.		
3. Types and structures of ballastless tracks	2	3. Understand the types and parameters of common ballastless track connection parts; understand the structure composition and characteristics of various ballastless tracks.	In-class instruction class exercise homework	lecture deliberate picture presentation Problem-oriented guidance
4. Basic elements of orbital geometry and position	2	4. Understand the structure of the running part of locomotives and rolling stock; correctly understand the basic requirements, meanings and standards of the geometric shape and position of straight track.	In-class instruction class exercise homework	lecture deliberate picture presentation Problem-oriented
5. Curve track gauge widening, overhang and transition curve	6	5. Correctly design the curve super height; correctly understand the basic principles and calculation methods of the curve gauge widening; understand the function and setting methods of the transition curve.	In-class instruction class exercise homework	lecture Problem-oriented Example analysis deliberate
6. Quasi-static calculation and strength verification of track structure	8	6. Correctly apply the continuous elastic base beam model to the static calculation of the track; correctly apply the formula to the quasi-static calculation of the dynamic action of the track structure; correctly check the strength of each component of the track.	In-class instruction class exercise Big assignment 1	lecture Problem-oriented guidance Example analysis deliberate
7. Type of turnout, structure, geometric dimensions and general layout diagram of single	8	7. Understand the type of turnout; correctly understand the structure of a single turnout; correctly understand the geometric dimensions and significance of a single turnout.	In-class instruction class exercise Big assignment 2	lecture Problem-oriented Example analysis deliberate

content of courses (knowledge point)	Class hours	Expected learning outcomes (ILO)	Implementation link (In class, projects, etc.)	instructional strategies
turnout				
8. Crossing speed and measures to improve crossing speed	2	8. Correctly understand the speed of crossing and measures to improve the speed of crossing.	In-class instruction class exercise homework	lecture deliberate Problem-oriented
9. Stability principle and structural design method of seamless line	8	9. Correctly distinguish the types of seamless lines and understand the basic principles, understand temperature force, longitudinal resistance of lines and temperature force; understand the concept of stability of seamless lines and influencing factors, apply unified theory of stability of seamless lines for calculation; correctly determine the design locking rail temperature and design structure of seamless lines.	In-class instruction class exercise homework	lecture deliberate Problem-oriented guidance
10. Repair content, machinery and management of the track structure	4	10. Correctly understand the content of track structure inspection; correctly apply the regulations to evaluate the quality of track structure; understand the track structure repair machinery; understand the maintenance technology of seamless lines; understand the characteristics of high-speed railway maintenance and repair.	autonomic learning classroom testing homework	lecture deliberate picture presentation Problem-oriented guidance
11. Urban rail transit track structure	2	11. Understand the track structure characteristics of ordinary subway rail transit, linear motor wheel rail transit, monorail transit, maglev rail transit and other urban rail transit.	autonomic learning classroom testing homework	Problem-oriented deliberate

4. Course assessment

(1) Course assessment structure

Examination items scale	ask
-------------------------	-----

Appendix B-7: Orbital Engineering Synabus				
	Homework	15%	Knowledge units (2, 3, 4, 6, 7) are arranged once each, and knowledge units 8 and 9 are combined once. There are a total of 6 regular assignments, which are completed independently by individuals	
usual performance	In-class test	15%	Each knowledge unit is assessed once, focusing on the students mastery of core knowledge points, with objective questions as the main part	
1	Big assignments	10%	The internal force calculation of the track structure (knowledge unit 5) and the strength calculation of each part of the track structure are carried out independently by the students, focusing on the examination of students ability	
final		6 0%	Assessment 1~7 knowledge units, focusing on the assessment of students mastery of professional knowledge and comprehensive analysis ability of specific engineering problems	
amou	nt to	100%		

Note: When the final exam score is lower than (excluding) 5 0 points, the regular score is counted as no more than 6 0 points.

(2) Course assessment rules

Assessment	primary coverage	
items	Knowledge units/points	Ability items
Homework	 Ballasted track structure Ballastless track structure Track geometry Turnouts Seamless lines Repair, management and management of track structure 9. Other urban rail transit tracks 	Written expression ability / analytical reasoning and solving complex engineering problems ability / industry standard reading and application ability /
In-class test	All knowledge units	Objective questions are all assessed in terms of knowledge
Big assignments	5. Track structure mechanical analysis	Ability to effectively express complex civil engineering problems with drawings, charts and texts/ individual design of structures, components (nodes) to meet specific civil engineering requirements/ ability to

Assessment	primary coverage		
items	Knowledge units/points	Ability items	
		conduct multi-solution comparison and obtain effective conclusions/ ability to read and apply industry standards	
final	Unit 1~7 Knowledge		

5. The tasks undertaken in the cultivation of the ability to solve complex engineering problems

Master the principles and methods of mechanical analysis and strength verification for track structures in railway engineering, dimensional calculation and track alignment for single turnout, wireless line calculation and design, etc. Be capable of using modern tools such as MATLAB and EXCEL to model and calculate complex engineering problems in related railway projects, effectively express the analysis process and conclusions, and analyze the validity and limitations of the results.

6. Non-technical ability training and observation

Cultivation: Guide students to study Unit 8 (Track Structure Repair and Management) and Unit 9 (Other Urban Rail Transit Tracks) independently. Through self-study, field research, and discussion outside of class, students will be encouraged to find solutions to complex engineering problems on their own and communicate effectively with classmates and teachers. This will foster their ability to learn independently and adapt to industry development needs.

Observation: The completion of regular assignments and classroom tests in units 8 and 9 is the main observation point.

7. Course ideological and political design

This course primarily teaches the basic requirements and standards for track engineering structure design and construction. In the process of imparting professional knowledge,

students should be made to understand that the design phase and construction phase are critical stages for quality control in engineering projects, determining the final quality of the physical structure. Students must always be educated to strictly adhere to design standards, construction norms, and acceptance criteria during both the design and construction phases. They should never blindly pursue economic benefits at the expense of quality, or substitute inferior materials for better ones, cutting corners. It is essential to fully recognize ones social responsibility. When you participate in a qualified construction project, on a smaller scale, you earn your salary and contribute to your family; on a larger scale, you contribute to national development.

8. Course evaluation and continuous improvement mechanism

(1) Course evaluation

The course evaluation cycle is set once per semester to evaluate the achievement of course objectives:

1. The achievement of course objective 1 is evaluated by in-class tests of knowledge points 1-5, 8, 10 and 11, regular assignments and final exams;

2. The achievement of course objective 2 is evaluated through in-class tests, major assignments and final exams of knowledge points 6, 7 and 9;

3. Achievement of Course Objective 3 Students will be evaluated by homework and tests after self-study with given self-study materials.

program objective	Corresponding graduation requirements	evaluation methodology	remarks
Course Objective 1	1.3	The scoring method	Comprehensiveevaluationthroughin-classtest,homework and final exam
Course objective 2	5.2	The scoring method	Comprehensive evaluation through in-class test, major assignment and final exam
Course	12.2	The scoring	Comprehensive evaluation

The course evaluation is carried out as follows:

objective 3	method	through regular homework and
		classroom tests.

(2) Continuous improvement mechanism

1. Establish a continuous improvement system

① Establish a continuous improvement group for this course.

⁽²⁾ The head of the course continuous improvement group is responsible for organizing and supervising the continuous improvement process.

③ Develop continuous improvement measures.

2. Establish a course continuous improvement group

Team leader: person in charge of the course team. Team members: members of the course team

3. Continuous improvement of the course

(1) Regular grade assessment mechanism: According to the academic situation of each class, teachers of the course group must summarize and calculate the indicators of regular grade assessment every 4 weeks, adjust the status of students in time, and make corresponding records.

⁽²⁾ Final examination assessment mechanism: analyze the final examination paper, count the score of each part of the test, and use the statistical results to analyze the course as a whole, so as to make improvements in the next class of students.

Formulator (signature): Director of department (office) review (signature): Professional person in charge of review (seal):